RFPT400

Low cost SMD Temperature Compensated Crystal Oscillator for indoor wireless

infrasture applications e.g femtocells

The RFPT400 is a high stability SMD TCVCXO designed and specified specifically to meet the short-term stability requirements for indoor wireless infra-structure products, e.g femtocells.

Product description

The RFPT400 is a high stability SMD TCVCXO designed and specified specifically to meet the short-term stability requirements for indoor wireless infra-structure products at a fraction of the cost of oven-stabilised oscillators. Using Rakon's advanced fourth-order analogue frequency compensation system 'Pluto^{™1}, the TCVCXO achieves unrivalled control of frequency variation with respect to temperature over the critical indoor temperature range. The stability of the RFPT400 allows a local area Base Station (BS) to achieve the frequency accuracy requirements of ETSI TS 125 104 without the need for minute-by-minute monitoring and adjustment. The BS's reliance on external sources of frequency compensation is reduced to an approximately once-per-week rate with a corresponding significant reduction in network load and infrastructure cost.

Applications

- Femtocell
- Base stations

Features

3.1

3.2

Supply voltage

Current

• 0°C~70°C, stability≤±100pb

Specifications

1.0	SPECIFICATION REFERENCES		
Line	Parameter	Description	
1.1	Model description	RFPT400	
1.2	RoHS compliant	Yes. Part numbers with suffix'LF'	
1.3	Package size available	5.0mm x 3.2mm	

Typical:

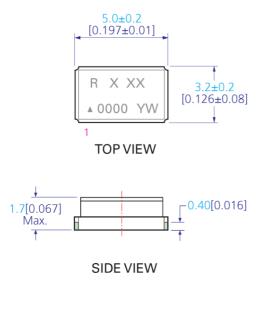
load 10kΩ//10pF

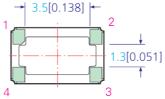
2.0 FREQUENCY CHARACTERISTICS

Line	Parameter	Test Condition	Value	Unit
2.1	Frequency range	Frequency range available	10 to 30	MHz
2.2	Frequency calibration	Frequency offset at 25°C, sixty minutes after reflow	±2 max	ppm
2.3	Frequency stability over temperature	Over 0°C ~ 70°C (dF/dT \leq 1°C/min) at fixed supply voltage and load	±0.08 to 0.25	ppm
2.4	Temperature range	Operating temperature range over which temperature stability is measured	0 to 70	°C
2.5	Supply voltage stability	±2% variation in supply voltage at 25°C	±10 max	ppb
2.6	Load sensitivity	$\pm 2\%$ variation in magnitude from $10k\Omega//10pF$	±5 max	ppb
2.7	Long term stability	Ageing rate following reflow after day 1. (Typical)	±10 max	ppb/day
2.8	Long term stability	Ageing rate following reflow after day 7. (Typical)	±3 max	ppb/day
2.9	Long term stability	Ageing rate following reflow after day 30. (Typical)	±1 max	ppb/day
2.10	Long term stability	Long term stability after 1 year	±1000 max	ppb
2.11	Long term stability	Long term stability after 5 years	±1500 max	ppb
3.0	POWER SUPPLY			
Line	Parameter	Test Condition	Value	Unit

3.3

3 max

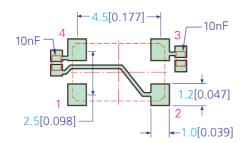

V


mΑ

rakon

CEOB2B晶振平台-全球最专业的晶振在线采购查询平台http://www.crystal95.com

MODEL DRAWING



BOTTOM VIEW

NOTE:

- Pin connections are detailed in the specification.
 For correct operation a 10nF supply de-coupling
- capacitor should be placed next to the device, as shown above. If an AC coupled output is required a 10nF should be placed in series with output pad 3.

RECOMMENDED PAD LAYOUT - TOP VIEW

TITLE: RFPT400 MODEL OUTLINE DRAWING	Tolerance: - xx =±0.5		
FILENAME: RFPT400_MD	REVISION: A	$- XX = \pm 0.5$ $X.X = \pm 0.2$	
RELATED DRAWINGS:	DATE: 22-Jul-10	$X.XX = \pm 0.10$	rakon
	SCALE: 5 : 1	$- X.XXX = \pm 0.05$ $- X^{\circ} = \pm 1.0^{\circ}$	
	Millimeters [inch]		©2009 Rakon Limited

CEOB2B晶振平台-全球最专业的晶振在线采购查询平台http://www.crysta195.com